Harzburgite melting with and without H2O: Experimental data and predictive modeling
نویسندگان
چکیده
[1] The effect of H2O on harzburgite-saturated melts has been quantified with a series of hydrous and anhydrous melting experiments using a piston-cylinder device. Experimental conditions were 1.2–2.2 GPa and 1175–1500!C. Melt H2O contents range from 0 to 10 wt %. The effects of temperature, pressure, and bulk composition (including H2O) on the SiO2 content of the experimental melts have been evaluated using SiO2 activity coefficients. The results suggest a two-lattice-type model for the melt phase in which H2O mixes nearly ideally with other network modifiers (MgO, FeO, etc.) but does not mix on the network-forming lattice site and so has little effect on SiO2 activity coefficients. The effect of H2O on SiO2 activity is too small to produce the high SiO2 contents observed in mafic andesite magmas. It is proposed that the SiO2-rich character of hydrous, subduction-related magmas is the result of the low temperatures at which hydrous melting occurs relative to anhydrous melting. Partition coefficients for MgO and FeO increase at lower temperatures, while the partition coefficient for SiO2 is nearly constant and is buffered by olivine-orthopyroxene equilibria. Therefore the SiO2/(MgO + FeO) ratios of harzburgite saturated melts increase as temperature falls in both hydrous and anhydrous systems. The results suggest that H2O contents of andesitic magmas may be far higher (>7 wt %) than is generally accepted. Experimentally measured mineral/melt partition coefficients (this study and literature data) have been parameterized in terms of pressure, temperature, and melt H2O content. These expressions have been used to construct a Gibbs-Duhem-based numerical model that predicts the compositions of hydrous and anhydrous olivine-orthopyroxene-saturated melts. Comparisons with experimental data not included in the model indicate that it is the most accurate model available for predicting the compositions of high-degree mantle melts, with or without H2O.
منابع مشابه
Ternary Phase Diagram Modeling of Chiral Medetomidine Salts Using NRTL-SAC Model
Experimental determination of solubility and ternary phase diagram of chiral compound are of tedious and time consuming tasks, and in many cases, there is not enough experimental data for different enantiomeric compositions to access the experimental ternary phase diagram. Using thermodynamic models with predictive capability, having less dependency on experimental data, affords a great advanta...
متن کاملExperimental and geochemical studies of terrestrial and lunar magmatic processes
Experimental and geochemical studies were performed to understand the formation of certain terrestrial and lunar igneous rocks. Chapter one is a study of convergent margin magmatism at Medicine Lake Volcano, California. The petrogenesis of a suite of variably porphyritic, high-alumina lavas was inferred from field relations, hydrous melting experiments and geochemical modeling. I conclude that ...
متن کاملPlagioclase Lherzolite-Residual Mantle Relationships within Two Eastern Mediterranean Ophiolites
The ophiolites of Othris, northern Greece, and Troodos, Cyprus, are of mixed lherzolite-harzburgite and harzburgite sub-type respectively. Within both ophiolites an entire spectrum of harzburgite, plagioclase harzburgite, lhcrzolite and plagioclase lherzolite interpreted respectively as residual and highly, moderately and slightly modified upper mantle has been recognised. Plagioclase lherzolit...
متن کاملMelt/harzburgite reaction in the petrogenesis of tholeiitic magma from Kilauea volcano, Hawaii
We use the results of elevated pressure melting experiments to constrain the role of melt/mantle reaction in the formation of tholeiitic magma from Kilauea volcano, Hawaii. Trace element abundance data is commonly interpreted as evidence that Kilauea tholeiite is produced by partial melting of garnet lherzolite. We experimentally determine the liquidus relations of a tightly constrained estimat...
متن کاملDetermination of Suitable Concentrations of H2O and CO2 in the Feed of Syngas Production (RESEARCH NOTE)
Modeling and optimization of synthesis gas production via the non-catalytic partial oxidation of methane (NCPO) were studied by minimizing of Gibbs free energy, and comparison studies were carried out to analyze the mechanism of syngas production. For this purpose, concentrations of CO2 and H2O in the feed were optimized in specified pressure and temperature, such that the hydrogen to carbon mo...
متن کامل